Very low-frequency blood pressure variability depends on voltage-gated L-type Ca2+ channels in conscious rats.

نویسندگان

  • Amanda M Langager
  • Bailey E Hammerberg
  • Diane L Rotella
  • Harald M Stauss
چکیده

The mechanisms generating high- frequency (HF) and low-frequency (LF) blood pressure variability (BPV) are reasonably well understood. However, little is known about the origin of very low-frequency (VLF) BPV. We tested the hypothesis that VLF BPV is generated by L-type Ca(2+) channel-dependent mechanisms. In conscious rats, arterial blood pressure was recorded during control conditions (n = 8) and ganglionic blockade (n = 7) while increasing doses (0.01-5.0 mg.100 micro l(-1).h(-1)) of the L-type Ca(2+) channel blocker nifedipine were infused intravenously. VLF (0.02-0.2 Hz), LF (0.2-0.6 Hz), and HF (0.6-3.0 Hz) BPV were assessed by spectral analysis of systolic blood pressure. During control conditions, nifedipine caused dose-dependent declines in VLF and LF BPV, whereas HF BPV was not affected. At the highest dose of nifedipine, VLF BPV was reduced by 86% compared with baseline, indicating that VLF BPV is largely mediated by L-type Ca(2+) channel-dependent mechanisms. VLF BPV appeared to be relatively more dependent on L-type Ca(2+) channels than LF BPV because lower doses of nifedipine were required to significantly reduce VLF BPV than to reduce LF BPV. Ganglionic blockade markedly reduced VLF and LF BPV and abolished the nifedipine-induced dose-dependent declines in VLF and LF BPV, suggesting that VLF and LF BPV require sympathetic activity to be evident. In conclusion, VLF BPV is largely mediated by L-type Ca(2+) channel-dependent mechanisms. We speculate that VLF BPV is generated by myogenic vascular responses to spontaneously occurring perturbations of blood pressure. Other factors, such as sympathetic nervous system activity, may elicit a permissive effect on VLF BPV by increasing vascular myogenic responsiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnesium inhibits norepinephrine release by blocking N-type calcium channels at peripheral sympathetic nerve endings.

Although Mg2+ contributes to blood pressure regulation partly in terms of vasodilator action, its sympatholytic effect may also play an important role to control blood pressure. Thus, in the present study, we investigated the effect of Mg2+ on sympathetic tone and blood pressure. We studied its actions on the blood pressure response to hydralazine, a direct vasodilator, in conscious spontaneous...

متن کامل

Frequency encoding in renal blood flow regulation.

With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation of the myogenic oscillation by TGF. Analysis by wavelet transforms of single-nephron blood flow confirm...

متن کامل

Frequency response characteristics of whole body autoregulation of blood flow in rats.

Previously, we demonstrated that very low-frequency (VLF) blood pressure variability (BPV) depends on voltage-gated L-type Ca(2+)-channels, suggesting that autoregulation of blood flow and/or myogenic vascular function significantly contributes to VLF BPV. To further substantiate this possibility, we tested the hypothesis that the frequency response characteristic of whole body autoregulation o...

متن کامل

LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro.

LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro. J. Neurophysiol. 78: 2574-2581, 1997. A N-methyl--aspartate receptor (NMDAR)-independent long-term potentiation (LTP) has been investigated in the dentate gyrus of the hippocampus in vitro in the presence of the NMDAR antagonist, -2-amino-phosphonope...

متن کامل

Oxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation.

We have investigated the modifications of cytosolic [Ca2+] and the activity of Ca2+ channels in freshly dispersed arterial myocytes to test whether lowering O2 tension (PO2) directly influences Ca2+ homeostasis in these cells. Unclamped cells loaded with fura-2 AM exhibit oscillations of cytosolic Ca2+ whose frequency depends on extracellular Ca2+ influx. Switching from a PO2 of 150 to 20 mmHg ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 3  شماره 

صفحات  -

تاریخ انتشار 2007